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Abstract: The increased life expectancy and the expansion of the elderly population are stimulating
research into aging. Aging may be viewed as a multifactorial process that results from the
interaction of genetic and environmental factors, which include lifestyle. Human molecular processes
are influenced by physiological pathways as well as exogenous factors, which include the diet.
Dietary components have substantive effects on metabolic health; for instance, bioactive molecules
capable of selectively modulating specific metabolic pathways affect the development/progression
of cardiovascular and neoplastic disease. As bioactive nutrients are increasingly identified, their
clinical and molecular chemopreventive effects are being characterized and systematic analyses
encompassing the “omics” technologies (transcriptomics, proteomics and metabolomics) are being
conducted to explore their action. The evolving field of molecular pathological epidemiology has
unique strength to investigate the effects of dietary and lifestyle exposure on clinical outcomes.
The mounting body of knowledge regarding diet-related health status and disease risk is expected
to lead in the near future to the development of improved diagnostic procedures and therapeutic
strategies targeting processes relevant to nutrition. The state of the art of aging and nutrigenomics
research and the molecular mechanisms underlying the beneficial effects of bioactive nutrients on the
main aging-related disorders are reviewed herein.

Keywords: aging; bioactive nutrients; dietary; nutrigenomics; oxi-inflamm-aging; molecular
pathological epidemiology

1. Introduction

Aging can be viewed as a multifactorial process stemming from the interaction of genetic and
environmental factors, which include lifestyle. It is characterized by the onset of several age-related
diseases (ARDs) such as dementia, osteoporosis, arthritis, diabetes, cardiovascular diseases (CVDs),
neurodegenerative disorders, and cancer which, though not unique to old age, are nonetheless closely
related to it. The physiological decline experienced by organisms over time is a key factor in increasing
the risk of developing ARDs [1,2]. As human life expectancy expands, the number of patients with
ARDs is rapidly increasing and will continue to mount, posing a serious challenge to healthcare
systems globally [3]. ARDs are also becoming a key social and economic problem [4]. Progress in the
understanding of genetic associations, particularly via genome wide association studies, has disclosed
a substantial contribution of genes to human aging and ARDs [4].
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Ample evidence from several species indicates that the maximum age attainable is genetically
determined and that multiple mitochondrial DNA polymorphisms are associated with longevity [5].
The several theories of aging that have been devised over the past few decades have failed to provide
an answer to the questions: “why do we age?”, “what can we do to live longer?”. However, the
notion of aging as a complex multifactorial process has superseded previous constructs based on
single factors [6]. In fact, whereas some of the processes that characterize physiological aging can be
explained by individual factors, no single theory can account for aging as a process. Several different
molecular mechanisms linking aging and ARDs have been advanced [3].

Various lines of research have demonstrated that telomerase activity and telomere length
shortening play important roles in aging, Alzheimer’s disease (AD) and type 2 diabetes (T2DM) [7,8];
a reduced capacity for DNA repair and genomic instability are commonly seen in both aging and
cancer [4,9,10]; mitochondrial dysfunction is a hallmark of aging and ARDs, including CVDs and
cancer [11,12]; and metabolic syndrome, diabetes, CVD, neurodegenerative diseases, and other ARDs
are associated with chronic inflammation [13–15].

In fact, most of the phenotypic characteristics of aging are the result of an age-related, low-grade,
chronic proinflammatory status that has been designated “inflammaging” [16], which is partly
under genetic control. Moreover, up-regulation of inflammatory responses induces senescence, and
inflammatory changes are shared by several age-related diseases. Oxidation-inflammation has thus
been hypothesized to be the main cause of aging (oxi-inflamm-aging) [17]. The aging-related chronic
oxidative stress affects all cells, especially those of regulatory systems (nervous, endocrine and immune
systems) and the communication among them, adversely affecting homeostasis and the maintenance
of the health status. Since the redox state and functional capacity of immune cells are related to
longevity, the immune system is also likely to be critically involved in aging and to affect its rate.
Moreover, the role of the immune system in senescence is likely to be pervasive, as also confirmed by
the demonstration that adequate dietary antioxidants improve immune function, reduce oxidative
stress, and increase longevity [18].

Human molecular processes are influenced by physiological pathways as well as exogenous
factors, including dietary components. Since nutrients directly affect physiological changes, the diet
has substantive effects. For instance, bioactive molecules capable of selective modulation of specific
metabolic pathways affect the development/progression of cardiovascular and neoplastic disease.
As bioactive nutrients are increasingly identified, their clinical and molecular chemopreventive effects
are characterized and systematic analyses encompassing all “omics” technologies (transcriptomics,
proteomics and metabolomics) are conducted to investigate their effects. Nutrigenomic knowledge
regarding physiological status and disease risk is expected to lead to the development of improved
diagnostic procedures and of therapeutic strategies targeting processes related to nutrition.

The state of the art of aging and nutrigenomics research and the molecular mechanisms underlying
the beneficial effects exerted by bioactive nutrients on the main ARDs are reviewed herein.

2. Aging and Age-Related Diseases

2.1. Aging Theories

A number of theories have been proposed to account for the unavoidable effects of aging. The main
aging theories are the genetic theory, cellular aging theory, the neuroendocrine theory, the immunological
theory, the free-radical theory, and the network theory.

The genetic theory [2] suggests that aging is the direct consequence of a genetic programme,
and that the lifespan of each animal species is regulated by genetic factors. Indeed, in the human
species the members of some families are particularly long-lived and diseases such as Down, Werner,
and Hutchinson-Gilford syndrome, which are characterized by an accelerated aging process and
a shortened lifespan, are hereditary [19,20]. Some studies do not focus on “gerontogenes”, i.e., genes
that actively determine aging, but rather on “longevity assurance genes”, genes that guarantee a long
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life. Extreme longevity appears to be related to a complex genetic pattern rather than to a few isolated
genes [19,20].

According to the cellular theory, cellular senescence limits the number of divisions that normal
human cells can undergo in culture [21]. Renowned experiments conducted by Hayflick have
demonstrated that embryo fibroblasts from a variety of animal species can replicate only a finite
number of times in proportion to the lifespan of the individuals of the species [21]. The Hayflick
limit is reached after a given number of cell divisions [22–25] or due to a reaction to given molecular
events. Replicative senescence, which correlates to the number of cell divisions determined by telomere
length, can therefore be considered as one of the causes of aging, whereas stress-induced senescence
is a response to a sudden modification of the genome and to DNA damage. Cellular senescence
should therefore be viewed as a response to age-related changes, which accelerate the organism’s
aging process. This view of senescence is consistent with the theories of damage build-up (like the
free-radical theory), which may explain the ultimate cause of cell senescence through aging [26].

The hypothesis underpinning the neuroendocrine theory of aging is that aging results from the
dysregulation of the neuroendocrine system by chronic exposure to physical, biological, or emotional
stress, which may overburden or damage the organism’s adaptive capacity, leading to “adaptation
diseases” and ultimately death [27–31]. The integration of such stimuli seems to be performed by
the hypothalamus through information provided by a variety of brain structures, chiefly the cerebral
cortex, the limbic lobe, and the reticular formation. The hypothalamic signals induce production
and secretion of pituitary hormones, which regulate key body functions, and stimulate peripheral
endocrine glands (e.g., adrenal glands, thyroid, and gonads), whose hormone products are conveyed
to their remote targets through the circulation [26]. In this highly sensitive, closed-circuit system,
hormone production is modulated to meet the changing needs of the body; these are induced by
continuously changing stimuli, which are stressful in the largest sense of the word, encompassing for
instance heat-cold, food-fast, activity-rest, and sleep-vigil. Over time, the mechanism may undergo
functional alterations and bring about irreversible modifications in all organs and apparatuses [32–42].

The immunological theory of aging holds that physiological aging is related to immune system
dysregulation [43]. The term “immunosenescence” has been proposed to describe the aging-related
impairment of immunocompetence, which makes the elderly more susceptible to disease and increases
morbidity and mortality from diseases linked to infectious agents via impairment of the response to
acute infection as well as vaccines. According to some researchers, immunosenescence also involves
an increased susceptibility to cancer and a diminished capacity of self-recognition, which lead to
autoimmune disorders [44].

The best known age-related changes affecting the immune system include: (i) thymus involution,
resulting in decreased production of T cells, which are responsible for acquired and cell-mediated
immunity [45]; (ii) lymphocyte remodelling, which is closely related to the T-cell compartment [46–58];
and (iii) changes in the secretion pattern of pro- and anti-inflammatory cytokines [16,59–69].

The free radical theory rests on the evidence that aerobes produce oxygen-centred free radicals
which irreversibly damage biological structures. Free radicals are formed inside cells as a result of
the participation of oxygen in energy. Mitochondrial respiration generates reactive oxygen species
(ROS) through leakage of intermediates from the electron transport chain [70]. ROS are highly unstable
molecules, due to an unpaired electron, and strive to attain a stable state by appropriating electrons
from nearby molecules, which in turn become unstable, thus propagating the instability.

The network theory, formulated in 1989 by Franceschi and colleagues [71], unifies a number of
previous theories [72]. This constructs accepts that aging depends on genetic and environmental
factors. The organism is exposed to endogenous and exogenous noxious agents that are physical
(radiation, heat), chemical (toxic metabolites, free radicals), and biological (viruses and pathogenic
microorganisms). The main mechanisms activated by the organism to preserve homeostasis include
DNA repair, stimulation of the antioxidant system, production of anti-inflammatory cytokines and
heat shock proteins, activation of poly-ADP-ribose polymerase (a DNA-repairing nuclear enzyme),
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and apoptosis, which is considered as the ancestral process by which damaged, mutated, infected, or
transformed cells are removed [54,56]. All these cellular and molecular processes have become layered
throughout evolution [56].

2.2. Inflammaging

The term inflammaging, introduced by Franceschi [16], indicates that aging is characterized
by a low-level, chronic, asymptomatic, systemic inflammatory state involving the body’s adaptive
systems in a sustained effort to provide a myriad, low-grade inflammatory responses that tend to
become chronic and are frequently asymptomatic [54,73–78]. It has been shown that this type of
chronic cell stress can induce the acquisition of the senescence-associated secretory phenotype (SASP),
which is characterized by the activation of a proinflammatory transcriptional programme [79,80].
Patients report vague and non-specific signs and systemic symptoms that are difficult to organize into
a diagnosis. Inflammaging is thus the result of the body’s ability to adapt and react to the effects of
a variety of stress factors that induce the accumulation of molecular and cellular damage.

Physiopathogenesis

The relationship between chronic systemic inflammation and aging is widely accepted.
Strong evidence indicates that most of the phenotypic characteristics of the aging process are induced
by inflammaging, which is partly under genetic control and which results from continuous antigenic
stimulation that continues after reproductive age, a phenomenon for which evolution has not
provided [67,81,82]. The consequent cellular damage appears to increase the risk of death among
the elderly and to affect longevity adversely [83]. A number of genetic, cellular, and serological markers
of inflammaging have been identified, such as an immunophenotype characterized by a reduction in
naive T cells and an accumulation of memory cells, increased levels of proinflammatory cytokines, and
significant alterations in the frequency of functional pro- or anti-inflammatory polymorphisms [69,73,84].
Inflammaging is characterized by macrophage activation and by expansion of specific T-cell clones
(megaclones) directed to common virus antigens such as cytomegalovirus (CMV) and Epstein-Barr
virus [85–90]. In a study of 121 individuals aged 25 to 100 years, 18 CMV-negative (−) and
103 CMV-positive (+), CMV+ subjects exhibited an accelerated age-related reduction of naive CD8+
T cells as well as a progressive increase in CD28− and CD8+ effector T cells [90]. Therefore, CMV
seropositivity seems to be associated with multiple phenotypic and functional alterations of T-cell
immunity that are considered as biomarkers of aging [90]. Herpes simplex virus (HSV) infection is
another chronic infection that may affect the immune/inflammatory response in the elderly and that
appears to be a cofactor in the damage produced by AD [91–93].

The complex inflammatory status that is the hallmark of inflammaging is mainly related to
the increase in circulating proinflammatory cytokines. Cytokines are a class of soluble proteins that
are responsible for the communication among the different immune system components. They play
an important role in inflammation by acting on the targeting, regulation, and termination of inflammatory
processes, and also participate in the aging process. Aging involves a reversible decrease in interleukin
(IL)-2, a cytokine that has a role in the development of Th1 populations and in increased production of
proinflammatory mediators such as IL-1, IL-6, and tumour necrosis factor (TNF) α [56]. The increase in
circulating age-related inflammatory markers could underpin the reduced ability of elderly organisms
to cope with various stressors. Inflammaging may also generate ROS that cause oxidative damage
and induce an increase in cytokine release, fuelling a vicious circle where tissue damage and
repair mechanisms are simultaneously activated, giving rise to a chronic proinflammatory state.
The damage accumulates slowly and asymptomatically over decades, resulting in aging and ARD
development [54,74–78]. ROS are also capable of exerting strong effects on gene expression and are
implicated in the pathogenesis of numerous ARDs such as atherosclerosis, T2DM, neurodegenerative
disorders, osteoporosis, and osteoarthritis, which all share a strong inflammatory/immunological
component. Moreover, oxidative stress and ROS induce apoptosis and may act as mediators,
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influencing other transcription factors, like NF-κB and AP-1 [73]. Aging-related alterations in apoptosis
may thus account for some prominent features of immunosenescence [82], such as the accumulation of
memory cells, megaclone expansion, the reduced T-lymphocyte repertoire, and the increased incidence
of autoimmune disorders.

Moreover, emerging evidence suggests that DNA damage response (DDR) signalling is a key
mechanism linking the build-up of DNA damage, cell senescence, and organism aging [94]. This evidence
suggests the involvement of epigenetic modifications; for instance microRNAs, small, non-coding
RNAs involved in post-transcriptional regulation, have been hypothesized to play a key role in the
diffusion of DDR/SASP signalling to non-damaged surrounding cells during aging, suggesting that
the identification of new DDR/SASP signalling components may enable the development of novel
therapeutic interventions against ARDs [9]. The hypothesis has also been advanced that microRNAs
may be harnessed as innovative tools to detect and target senescent cells and to develop therapeutic
interventions that can slow down the proinflammatory programme activated in senescent endothelial
cells [95].

Conversely, the cellular and molecular mechanisms related to the body’s ability to respond to
chronic oxidative stress and inflammation appear to play an important role in promoting longevity and
in avoiding/delaying the major ARDs. A role for inflammatory cells and molecules in the pathogenesis
of ARDs such as atherosclerosis, AD, and Parkinson’s disease has clearly been documented. The control
of inflammation may be capable of fostering successful aging. That this goal can be achieved is
demonstrated by centenarians, living examples of successful aging who have attained the desirable
form of aging, because they do not suffer from chronic debilitating diseases, they are physically
self-sufficient, and have preserved their cognitive abilities. The study of centenarians has the potential
to provide insight into the biological basis of healthy aging or on the combination of genes and lifestyle
that can prevent the major ARDs. The INCHIANTI study, which ended in 2004 [96], showed that
healthy elderly subjects have high levels of IL-6, IL-1 and C-reactive protein (CRP) compared with
healthy young subjects. A further study of a group of Italian centenarians has shown that individuals
genetically predisposed to produce IL-6 in old age are less likely to reach the extreme boundaries of
human lifespan.

Lio and colleagues [76] have assessed the levels of two cytokines, the anti-inflammatory IL-10
and the proinflammatory TNF α, in a group of centenarians and found that compared with younger
subjects they express genes coding for high levels of IL-10 and low levels of TNF α. Moreover, the
frequency of the variants (polymorphisms) of key genes involved in immune response and low-grade
inflammation are found with different frequencies in centenarians and young individuals [89,97,98].
The identification of an anti-inflammatory genotype in centenarians suggests that chronic inflammation
is a key predictive marker of mortality/morbidity.

Evidence of inflammaging has also been found in healthy centenarians, who exhibited up-regulation
of markers such as the anti-inflammatoryIL-10 and the proinflammatory TGF β [99,100]; these data
suggest that anti-inflammaging activity is also present in these subjects, and is equally important for
longevity, and that longevity is the result of the balancing of such conflicting processes [101]. A lifespan
exceeding 90 years seems to have a strong genetic basis, explaining why the almost-100-year olds
and centenarians tend to belong to the same families. Longevity seems to be influenced by a complex
genetic pattern, not by a few isolated genes, suggesting selection for genes and genetic variants
associated with strong immune responses and inflammation.

The hypothesis has been advanced [88,102] that an effective inflammatory response directed at
combating infection at a young age may eventually be the cause of conditions such as arthritis, diabetes,
CVD, and neurodegenerative disorders in old age. The dual biological role of inflammation, positive at
a young age and negative in old age, is consistent with antagonistic pleiotropy theory, whereby a gene
can exert opposite effects in different periods of life. Inflammation is not a negative phenomenon
per se; indeed, in responding to various stimuli, the immune system enacts a complex series of local
and systemic reactions that limit tissue damage, isolate and destroy infectious agents, and activate
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repair processes. Its adverse effects are related to the increased life expectancy, which has not been
provided for by evolution. An extended lifespan involves that the immune system continues to react
against external agents for decades longer than it has been programmed for, and that such increased
antigenic load eventually establishes a chronic inflammation that contributes to the deterioration of
various organs, becoming a risk factor for all ARDs. Elderly individuals with higher blood levels of
an acute-phase protein, CRP, are especially prone to chronic inflammatory diseases.

The systemic consequences of inflammaging are associated with a pattern of changes that has been
designated “frailty” [101]. Epidemiological studies suggest that such changes promote an atherogenic
profile that is shared by other chronic inflammatory ARDs. Other genetic and environmental factors
that promote disease continue to exert their effects and even determine the main organ that will be
affected. Differences in inflammatory status partly explain why not all elderly subjects who share
the same risk factors go on to develop ARDs. The genetically determined immune system potential
is therefore gradually depleted over time. Improvements in hygienic conditions may have reduced
significantly the antigenic overload, delaying the depletion. This factor, besides the reduced mortality
from acute infectious diseases, may contribute to the increased life expectancy and to the increase in
the number of subjects who reach the extreme boundaries of the human lifespan.

2.3. Aging-Related Disorders

Inflammation is a chronic, systemic cause of several ARDs, including atherosclerosis, CVD, AD
and cancer. Recent data show that chronic systemic inflammation contributes to anxiety, depression,
cognitive decline, insulin resistance and adult-onset diabetes, obesity, and Parkinson’s disease.

2.3.1. Cancer

Cancer mostly affects elderly subjects. In industrialized countries, average age at cancer diagnosis
is close to 70 years, and is expected to increase [103]. Prolonged exposure to carcinogenic factors,
increased cell susceptibility to environmental carcinogens [104,105], and immunosenescence [106]
are believed to be major reasons for the predominance of cancer in the later decades of life. A strong
link between the chronic inflammation induced by chemical, biological, mechanical, or physical
lesions and cancer is well documented. For example, bowel inflammatory disease, ulcerative colitis,
and Crohn’s disease predispose to the development of cancer of the large intestine or terminal
ileum [107,108] and Helicobacter pylori infection is associated with atrophic gastritis, mucosal dysplasia,
and gastric adenocarcinoma. Inflammation is also involved in the development of solid tumours
such as colon cancer, as demonstrated by a prospective case-control study where the 172 subjects
(out of 22,887 adults who were followed for 11 years) who developed colon cancer had higher plasma
CRP [109]. Cancer susceptibility and severity may be associated with functional polymorphisms of
cytokine genes involved in regulating inflammation; in particular, polymorphisms of IL-6 and IL-10
genes may influence cancer susceptibility and in some cases its prognosis.

A variety of different mechanisms may link inflammation to cancer, since (i) induction of angiogenesis
by inflammatory factors promotes cancer progression [110]; (ii) increased release of proinflammatory
factors and certain cytokines such as IL-1, TNF α and interferon are involved in inflammation and cancer
development [110,111]; (iii) free-radical production promotes carcinogenesis [110].

The inflammatory state is a key factor in the intermediate stages of tumour development.
In cancer, genetic damage triggers disease onset and inflammation fuels the process. In 1978, Alberto
Mantovani found that innate immunity cells tend to cluster around some tumours [112]. Pollard and
colleagues subsequently showed that cancer cells “re-educate” macrophages, turning them into
cytokine and growth factor factories that stimulate cancer growth by acting as tumour promoters [112].
Macrophages produce TNF, which activates nuclear factor NF-κB in cancer cells, triggering the
production of proteins that stop apoptosis and activate cell proliferation. The innate immune system
is thus harnessed to help the tumour grow. How the process starts is, however, still unclear [112].
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Interestingly, cancer development is largely avoided or delayed in centenarians, where changes in
some specific microRNAs have been detected in plasma and leukocytes [113].

2.3.2. Atherosclerosis

Almost 50% of all deaths in the developed world and 25% of those occurring in developing countries
are related to CVD. Atherosclerosis is the leading cause of heart disease and stroke. Atherosclerosis, which
used to be considered as a disease of lipid accumulation, is now viewed as a chronic inflammatory
disorder affecting large and medium-sized vessels [114]. Lesions arise in childhood as reversible lipid
streaks which in old age tend to become plaques that may reduce the arterial lumen, or else become
ulcerated and give rise to thrombosis that may result in lumen occlusion. Clinical manifestations range
from angina pectoris and myocardial infarction when the coronary arteries are involved, stroke if it is
the arteries of the central nervous system and peripheral arterial disease if it is the peripheral circulation.
Vessel branches and bends are more prone to host atherosclerotic lesions, due to surface friction
(hemodynamic stress), an important factor in intima thickening. Early atherosclerotic lesions are
identified by the dysfunction induced by cardiovascular risk factors (smoking, hypercholesterolaemia,
hyperhomocysteinaemia, hypertension, obesity and diabetes mellitus, and possibly infectious and
immunological causes) and by the accumulation and subsequent oxidation of low-density lipoprotein
(LDL). Endothelial dysfunction evolves to a situation characterized by monocyte and T-cell migration
and adhesion to the intima in response to the surface expression of endothelial adhesion molecules,
e.g., selectins, VCAM-1, ICAM-1 and chemotactic signals (e.g., MCP-1). The monocytes recruited
to the intima proliferate and differentiate into macrophages that phagocytose oxidized lipoproteins,
turning them into foam cells that characterize fatty streaks. Secretion of cytokines and growth factors,
mainly from macrophages, induces migration of smooth muscle cells from the media to the intima
and their proliferation and differentiation into a phenotype that synthesizes extracellular matrix.
As a result, lipid streaks are transformed into advanced lesions, i.e., fibrous plaques formed by
a fibrous cap that encloses a lipid core. LDL accumulation is due not only to the increased permeability
of the functionally damaged endothelium, but also to its ability to bind the extracellular matrix
constituents in the intima. LDLs undergo oxidation and are then trapped in the extracellular matrix
of the subendothelial space where they play a key role in the development of the chronic intimal
inflammation. LDLs are oxidized by enzymes and oxidative metabolites produced by arterial wall
cells, especially monocytes-macrophages recruited in the intima. In this context, they activate some
transcription factors (e.g., NF-κB) in cells (endothelium, macrophages, smooth muscle cells), which
induce the expression of genes encoding adhesion molecules, cytokines, and growth factors and trigger
the inflammatory response, activate platelets and cause aggregation. Fibrous plaques that develop
ulceration, bleeding, thrombosis, and calcification, lead to the third and most severe atherosclerotic
stage: complicated lesions. Plaque fissuring is held to be the result of several factors, particularly
plaque inflammation and an abundant lipid component, which would make the plaque less resistant
to the blood component. Inflammatory cells and especially macrophages produce hydrolytic enzymes
such as metalloproteases that can lyse the collagen of the fibrous cap, impairing its resistance to
hemodynamic stress.

2.3.3. Alzheimer’s Disease

AD is the most common neurodegenerative disease in the West. The aging of the population
is making it an increasingly severe public health problem. The disease manifests with a progressive
decline in memory and intellectual abilities, impoverishment of language and behavioural skills,
and disorientation. Characteristic neuropathological features are senile plaques (SPs), neurofibrillary
tangles (NFTs) and amyloid angiopathy. NFTs are accumulations of dystrophic neurites containing
double helix filaments whose main component is the phosphorylated form of τ protein encoded by
chromosome 17 and associated with microtubules. β amyloid deposits are seen both in brain vessel
walls and, more typically, in SPs, which consist of a central core of β amyloid fibrils surrounded by
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a ring of dystrophic neurites, reactive astrocytes and microglia. The β amyloid protein originates from
the cleavage of a precursor consisting of two fragments of 40 (Aβ1-40) and 42 amino acids (Aβ1-42).
In the familial form of AD, more than 50% of patients bear mutations in the amyloid precursor
protein on chromosome 21 [115], presenilin 1 gene on chromosome 14 [116], and presenilin 2 gene
on chromosome 1 [117]. These changes are associated with increased production of Aβ1-42, which is
highly toxic for neurons and is the main SP component. However, the role of genetic factors in the
pathogenesis of sporadic AD is not completely clear, and multiple risk factors are likely to be involved.

Immune responsiveness in AD appears to be altered [118,119]. Some acute-phase proteins and
elements of the immune system have been detected in the brain of these patients besides the classic signs
of inflammation such as oedema and neutrophil invasion. Alterations found in the brains of AD patients
but not in age-matched healthy controls include a greater number of receptors for immunoglobulin and
for the complement, increased microglial expression of the major histocompatibility complex, increased
production of cytokines (IL-1β, IL-6), increased acute-phase proteins (plasma α 1-antichymotrypsin,
α1AC) and infiltration of T lymphocytes in tissues [120–123]. A case-control study [120] showed
that plasmaα1AC levels are related to the degree of cognitive impairment in AD patients and that
peripheral markers of inflammation or altered immune response could be used to monitor disease
progression. The role of inflammation is further stressed by epidemiological studies showing that
the long-term use of non-steroidal anti-inflammatories may protect against AD [124]. Several studies
have reported increased concentrations of some cytokines and their receptors, which regulate and
amplify immune responses, whereas lymphocytic infiltration does not seem to play a large role.
The complement system is involved in these reactive processes [125]. Its activation prepares the cell
for phagocytosis and stimulates cytolysis. Antibodies against complement components have been
described in brain tissue of AD patients, but they showed no binding in tissue from age-matched
controls. These and other data indicate that AD involves activation of the complement cascade to
produce a lytic membrane complex; neurons exposed to the complex are protected by an increased
synthesis of inhibitors. However, self-destruction and phagocytosis are the predominant processes.
These findings provide valuable information for AD treatment and raise questions on issues such as
the relationship between β amyloid and inflammatory response. β amyloid appears to directly activate
components of the inflammatory response such as the complement cascade and microglia [126] and
macrophage activity.

In conclusion, the brain lesions associated with AD, such as NFTs and SPs, are characterized
by a broad spectrum of inflammatory mediators produced by cells residing in the brain, including
neurons. Though of secondary importance compared with the fundamental cause that determines their
formation, there is strong evidence that inflammation exacerbates neuronal loss. Consequently, the
AD risk is substantially influenced by several polymorphisms in the promoter region of genes, and
other non-coding regions, coding for inflammatory mediators. Alleles that support the up-regulation
of inflammatory mediators or that favour the down-regulation of anti-inflammatory mediators are
more frequent in AD patients than in controls. Since polymorphisms are fairly common in the
general population, there is a strong possibility that all individuals inherit one or more high-risk
alleles [123,127–134].

3. Bioactive Nutrients and Nutrigenomics

The interactions among genomic and environmental factors is crucial in the development/
progression of several human diseases. The diet is a key environmental factor with a prominent role in
disease aetiology [135].

The diet primarily meets the metabolic and energy requirements of body composition homeostasis.
However, it may also enhance health through regulation of specific processes [136], positively counteract
inflammaging and the epigenetic changes associated with aging, and promote health [137,138].
Indeed, nutrients are considered as dietary signals capable of affecting both metabolic programming
and cell homeostasis. Bioactive nutrients or chemopreventive molecules exert effects on human
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health and reduce disease risk through specific molecular mechanisms [139–141]; experimental and
epidemiological evidence emphasizes the potential of dietary components, both macronutrients
(carbohydrates, protein, fat, and fibre) and micronutrients (antioxidant vitamins and minerals)
as first-line interventions in the prevention and treatment of cancer and other diseases [140,141].
Nutritional research studies span numerous disciplines and are conducted at the molecular and genetic
level [142,143]. For instance, a recent review of studies into the effect of the Mediterranean diet (MD)
on inflammaging, cancer, and most ARDs has found that the MD and its individual bioactive nutrients
modulate several interconnected processes involved in tumorigenesis, the inflammatory response
(e.g., free radical production, NF-κB activation, and the expression of inflammatory mediators), and
the eicosanoid pathway. In particular, the authors highlight the evidence indicating that the MD
can affect the balance between pro- and anti-inflammaging and some emerging topics, such as the
maintenance of gut microbiota homeostasis and the epigenetic modulation of carcinogenesis through
specific microRNAs [144]. Moreover, a parallel randomized trial has investigated the effect of a healthy
diet on inflammaging and its consequences on the prevention of age-related decline in European
elderly individuals [145].

The effects of food at the genetic and epigenetic level are examined by two new approaches,
nutrigenetics and nutrigenomics, which assess the influence of dietary components on health and
disease onset, progression, and treatment. Nutrigenetics examines how genetic variation affects the
response of an organism to a given diet, evaluating the risks and benefits of specific diets and dietary
components and formulating “personalized nutrition” recommendations. Nutrigenomics investigates
how nutrients affect gene expression and downstream processes [146].

Nutrigenomics and nutrigenetics clearly straddle multiple research fields that span from nutrition
to bioinformatics, molecular biology, genomics, functional genomics, epidemiology, epigenomics,
transcriptomics, metabolomics, proteomics, lipidomics, and the microbiome [147].

To an extent, nutrigenomics approaches pharmacogenomics, which involves the systematic study
of the effect of drugs on the genome [148]. However, whereas drugs are pure compounds, acting with
affinity and selectivity on a limited number of biological targets through administration of precise and
low doses, nutrigenomics addresses the complexity and variability of the diet, where some nutrients
may be consumed in high albeit non-toxic concentrations (from µmM to mM) and may also bind to
targets with different affinities and specificities [149,150].

Eating patterns influence gene, protein expression and metabolism and may thus be considered as
endogenous cellular mediators. Once it is absorbed at the cell level, a nutrient is capable of interacting
through specific signalling pathways, and even small changes in its structure may involve differential
activation of metabolic steps. Fatty acids and their degree of carbon chain unsaturation are a valuable
example, since n-3 polyunsaturated fatty acids promote anti-inflammatory pathways, whereas n-6
polyunsaturated fatty acids induce synthesis of proinflammatory molecules; in addition, trans fatty
acids increase plasma LDL-cholesterol [151–153] whereas n-3 polyunsaturated fatty acids do not have
this effect.

It is likely that several dietary compounds exert their protective and restorative action through
modulation of distinct signal transduction pathways. Nutrients have been found to affect gene
expression as a consequence of a direct interaction with transcription factors [154]; for instance
fat-soluble ligands, such as vitamin A/D, activate their cognate nuclear receptors for ligand-dependent
transcriptional regulation. Population studies based on dietary questionnaires supply useful data
to relate dietary intake to phenotypes and to the risk of developing a number of diseases [155].
Moreover, actual nutritional intake can be monitored by measuring specific molecules in blood, urine,
fat, and tissues, an approach that can also enable identification of the nutritional biomarkers that
connect nutrition and health. Altered serum lipids (e.g., cholesterol, triglycerides), increased blood
pressure, and reduced insulin sensitivity are common predictors of diet-related diseases. A broad
biomarker panel, rather than a search limited to single markers, would be able to provide exhaustive
information to characterize the health status of individuals.
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The application of “omics” technologies to nutrition and bioinformatic data analysis allows
integrating information from the closely interconnected fields of transcriptomics, proteomics, and
metabolomics, to identify specific differences related to nutritional habits and to investigate the
mechanisms that cause changes [147,148,156–161].

The risk of developing disease is partly under genetic control. Nutrigenetics investigates the genetic
variations induced by individual nutrients, for instance by relating single nucleotide polymorphisms
and point mutations in DNA sequences to diet responsiveness [162,163]; population differences in
single nucleotide polymorphisms can help risk assessment and prediction, enabling formulation
of lifestyle recommendations. Phenylketonuria has been the first case of a condition induced by
a single gene defect to be successfully treated with a dietary, i.e., nutrigenetic, intervention, namely
a low-phenylalanine diet [164].

Nutriproteomics, a recent branch of proteomics, studies protein structure and function and
protein-protein interactions to identify the molecular targets of dietary components [165–195]. Here, too,
the goal is to detect differences in protein patterns induced by given interventions, for instance a dietary
treatment. In turn, proteomics analyzes the effect of dietary components at various levels, investigating
peptides as bioactive markers and seeking information on nutritionally relevant biological pathways
in view of the development of dietary interventions to be applied in the clinic. Proteomics, also
combined with gene expression analysis, has been used in cancer prevention studies to identify novel
biomarkers [196–206].

A quantifiable change connecting a normal or pathological condition to modulation of mRNA,
a protein, or the concentration of a metabolite can be used as a molecular biomarker. In particular,
a protein concentration is a practical biomarker and a valuable diagnostic tool, due to its reproducible
and accurate determination [207]. The dietary levels of most nutrients are only weakly biologically
active and probably have several targets. When a biomarker is tested, the timing of its response(s)
should be considered according to the nutrient’s bioavailability and bioefficacy. Notably, although
biomarkers may correlate with nutrient intake, their modulation may in fact be the result of a more
complex process including intake, absorption, metabolism, and excretion, as well as environmental
factors and genetic predisposition. Based on these considerations, successful investigation may well
need a combination of proteomic biomarkers and information from other “omics” technologies.

The levels of individual metabolites can be considered as the final step in a biological process that
is influenced by genetic and environmental factors, including, critically, nutritional intake.

The metabolome (from genome) is the complete set of metabolites in an organism, and
metabolomics studies classify and quantify them individually in a biological fluid, cell culture, or tissue
sample. Their levels, determined by analytical methods, supply information on how enzymes and the
other functional proteins affect cellular homeostatic mechanisms [180]. Nutrients can interact directly
with our body at the level of organs, cells, and molecules. They usually come in complex mixtures,
where the amount of each compound and its interaction with multiple components are crucial, since
they influence bioavailability and bioefficacy. Metabolomics allows systematic investigation of small
organic molecules, and in conjunction with nutrigenomics establishes how those molecules can reflect
the effects of different diets [182]. A key goal of nutritional metabolomics is to detect and identify
all endogenous human metabolites and exogenous components consumed through food that are
found at least transiently in human body fluids. The development of metabolite panels related to
specific nutrition states would be able to characterize physiological and pathological conditions more
exhaustively than dosing of a single molecule, and such information could be integrated with the data
obtained with the other “omics” technologies [147,183–185].

A further approach that deserves to be mentioned in relation to the role of nutrients in health
and disease is nutritional epigenetics, which endeavours to explore gene-diet interactions and can
provide information on the role of nutrition in aging and ARD development [137,208]. Epigenetic traits
are defined as heritable DNA modifications that regulate chromosome architecture and modulate
gene expression, without changes in the underlying bp sequence, ultimately determining phenotype.
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DNA methylation and post-translational histone modifications are well-established levels of epigenetic
regulation. Epigenetic phenomena are critical from embryonic life to old age, and epigenetic pattern
aberrations are recognized as aetiological mechanisms in several ARDs including cancer, CVD and
neurodegenerative disorders. Nutrients can act as sources of epigenetic modifications and can regulate
the site where they take place. Nutrients involved in one carbon metabolism, i.e., folate, vitamin
B12, vitamin B6, riboflavin, methionine, choline, and betaine, are involved in DNA methylation
through modulation of the levels of the universal methyl donor S-adenosylmethionine and of the
methyltransferase inhibitor S-adenosylhomocysteine. Other nutrients and bioactive components of
food—e.g., retinoic acid, resveratrol, curcumin, sulphoraphane and tea polyphenols—affect epigenetic
patterns by modulating the levels of S-adenosylmethionine and S-adenosylhomocysteine or the
enzymes that catalyze DNA methylation and histone modifications. Aging and ARDs are associated
with profound epigenetic changes, even though it is unclear whether such changes are programmatic
or stochastic [209]. Future work in this field will need to characterize the epigenetic pattern of healthy
aging, to learn which nutritional measures can contribute to maintain or achieve it.

A large number of metabolically active metabolites are produced by the microbiome, particularly
the gut microbiome, which may be viewed as a complex organ capable of influencing host health.
Recent studies suggest that it should actually be regarded as an “immune system” that can promote
health but sometimes initiates disorders such as inflammatory bowel disease, metabolic syndrome,
obesity-related disease, diabetes, liver disease and colorectal cancer [210]. Changes in the diet
may exert profound effects on the microbiome and are capable of altering the overall bacterial
composition. Interactions between the microbiome and the metabolism of dietary components such as
phosphatidylcholine and carnitine have been reported to modulate the CVD risk [147]. Moreover, the
microbiome could constitute a novel therapeutic opportunity, because in some cases it may be used to
detect gut-related diseases earlier than conventional diagnostic workups. In the future, this information
could be harnessed to stratify patients more accurately and for more effective treatment [210].
These research fields are still in their infancy. It is therefore critical to clarify the relationship among
genetics, diet, microbiome, and health risk.

Finally, useful data are expected to come from systems biology, a highly cross-disciplinary approach
to biology research; in turn, biochemical systems biology includes and combines genomics, biochemistry,
and molecular biology integrating them with mathematical and computational analysis, engineering
practices, and “omics” technologies such as transcriptomics, proteomics and metabolomics [211].
A number of experimental strategies are combining quantitative measurements of cell components
(mRNA, proteins, and metabolites) using mathematical and computational models [147,212–232].
Such high-throughput technologies are providing a huge amount of functional genomic data that are
expected to deliver breakthrough in aging research. According to Özdemir and colleagues, now that
the goals and tasks of nutrition science and nutrigenomics have become clearly established, it would be
desirable to achieve the integration of four key domains that are naturally connected—agrigenomics,
nutrigenomics, nutriproteomics, and nutrimetabolomics—which address complementary issues in
relation to individual differences in response to food-related environmental exposure. Although the
knowledge and findings of these four omics have still failed to be integrated, they have a very high
innovation potential. In the future, personalized nutrition interventions are expected to benefit from
the integration of life sciences funding, research, and practice from “farm to clinic to supermarket to
society,” and from “genome to proteome to metabolome” [233].

4. Molecular Pathological Epidemiology

Epidemiological research typically investigates the factors that are associated with the overall
risk of developing certain diseases, including the relationship between exposure and a disease
entity in population-based cohorts, whereas pathology research traditionally explores aetiology,
development, and histopathological and molecular characteristics to predict prognosis and response to
treatment. The merging of the two approaches through the incorporation of molecular pathology into
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epidemiological research has created a new population health science field that straddles several research
areas, which has been designated Molecular Pathological Epidemiology (MPE) [234,235]. Its close
relationship to both aetiology and prognosis involves that MPE pursues to gain a greater understanding
of how particular exposures influence disease risk through the search and evaluation for molecular
pathological markers. Disease processes are influenced by a wide range of exogenous (e.g., acquired
genetic and epigenetic alterations, diet, lifestyle, smoking, medications, microorganisms) as well as
inherent factors (e.g., germline genetic variations, sex, ethnicity) that induce significant interindividual
variability in all phases of the disease process [236]. Compared with conventional approaches,
where patients diagnosed with similar symptoms or disease manifestations are assumed to make up
a homogeneous group and to share similar causative factors, MPE employs molecular pathological
signatures to refine patient categorization and identify subgroups that share more homogenous, to gain
insight into disease heterogeneity respect to both aetiologies and pathogenic process. By this approach,
the MPE multidisciplinary method explores whether exogenous and endogenous factors are associated
with differential molecular signatures and disease subgroups [235,236].

The notion of MPE was first introduced by Ogino and Stampfer in a comment on a case–control
study of body mass index (BMI) and the risk of colorectal cancer (CRC) in relation to tumour
microsatellite instability (MSI) (MSI-high vs. microsatellite stability [MSS] status) [234,237]. The authors
demonstrated that pre-diagnosis BMI was associated with an increased risk of developing CRC, and
that the excess risk associated with BMI was limited to MSS tumours [237].

A large number of investigations have subsequently been identified as belonging to MPE. Several
of these have identified links between diet, lifestyle, environmental exposure, and alteration of
molecular patterns characterized as distinctive features of specific diseases.

Over the past few years, the molecular changes related to the risk of developing CRC have
extensively been explored. MPE findings suggest that the effects on outcome of alterations in the WNT
signalling pathway and cadherin-associated protein β 1 (CTNNB1 or β-catenin) are modified by BMI
and physical activity. In particular, CTNNB1 activation was associated with longer CRC-specific survival
and overall survival among obese patients, whereas post-diagnosis physical activity was associated with
longer CRC-specific survival only for patients with negative nuclear CTNNB1 status [238]. According to
another study, obesity and physical inactivity are associated with a higher risk of CTNNB1-negative
CRC, but not of CTNNB1-positive CRC, suggesting that the energy balance and the metabolic state
exert effects on a specific carcinogenesis pathway that is less likely to be dependent on WNT/CTNNB1
activation [239]. An important role for BMI has also been found in relation to tumour TP53 mutations,
which are key factors in CRC development, and on fatty acid synthase (FASN), which is overexpressed
in some colon cancers and in involved in the energy metabolism of fatty acids. MPE data support
a dual role for TP53 alterations in cell-cycle deregulation and cell autonomy in relation to the energy
balance [240], while FASN-negative and FASN-positive tumours have been reported to be associated
with a significantly different CRC risk [241]. Moreover, an excess energy balance may influence the
immune and inflammatory status, suggesting an association of BMI with a heightened CRC risk
regardless of the level of the lymphocytic response to the tumour [242].

Dietary compounds affect specific pathways related to cancer development. High alcohol
consumption increases the CRC risk because one-carbon metabolism triggers a DNA methylation
reaction, which affects the CpG island methylator phenotype (CIMP), with tumour epigenetic features
modulating the cancer risk [243,244]. Preclinical and epidemiological studies have provided evidence
of a protective effect of vitamin D against CRC [245], whereas a higher calcium intake has been
associated with a lower risk of developing CRC, especially distal colon cancer; the overall inverse
association was linear and did not differ in relation to intake source [246]. Similarly, a high intake of
marineω-3 polyunsaturated fatty acids (ω-3 PUFAs; including eicosapentaenoic acid, docosahexaenoic
acid and docosapentaenoic acid) has been documented to have an antineoplastic action. An increased
intake of marineω-3 PUFAs after CRC diagnosis may still confer benefits [247].
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A large role for microRNAs has also been documented by MPE studies. The expression level
of miR-21 is associated with a worse CRC clinical outcome [248], whereas let-7 family microRNAs
suppress adaptive immune responses, contributing to immune evasion by the tumour [249]. Circulating
miR-21-5p and miR-126-3p have been shown to play a role as dynamic biomarkers of systemic
inflammatory/angiogenic status, and could have an even greater role in managing T2DM [250].
Furthermore, microRNAs have an established potential in the diagnosis and prognosis of several
cancers and of pollution exposure [251]. For example, a pool of deregulated circulating and tissue
microRNAs with biomarker and therapeutic potential has been identified in malignant mesothelioma,
a lethal cancer related to asbestos exposure [252].

MPE findings have also linked leukocyte telomere length (LTL) and genetic variants in the
telomerase reverse transcriptase gene region to the risk of pancreatic cancer [253]. LTL shortening
is found in a number of ARDs, including T2DM. Analysis of its possible association with mortality was
analyzed in this study. Recently, time-dependent mortality risk stratification has allowed demonstrating
that T2DM duration and LTL combined with clinical parameters can provide additive prognostic
information on mortality risk in these patients [8].

Finally, several lines of MPE evidence have confirmed the link between microbiota and disease.
For instance, the abundance of Fusobacterium nucleatum, which increases gradually from the rectum to
the caecum, reflects the pathogenic influence exerted by the gut microbiota on neoplastic and immune
cells, and may promote CRC growth by inhibiting T-cell-mediated immune responses against the
tumour. A greater amount of F. nucleatum DNA in CRC tissue is associated with shorter survival and
may serve as a prognostic biomarker [254,255].

It is highly likely that the MPE data reviewed above can be harnessed to develop new disease
prevention and early detection approaches, and that the molecules and pathways identified by MPE
research can be used to devise new treatments by targeting altered regulatory mechanisms.

5. Conclusions

The notion that aging is a complex, multifactorial process depending on the interaction of genetic
and environmental (including lifestyle) factors is widely shared. According to the latest scientific data,
human genes are programmed for a lifespan of 120 years. Yet longevity is not merely embedded in the
genes; rather, no less than 70% of it needs to be conquered every day by a healthy diet and lifestyle.

The application of integrated omics approaches, together with increasingly detailed nutritional
information have vastly improved the exploration and identification of relationships between
lifestyle, diet, and health, including the interactions with genetic background and the microbiome,
which actively influence them. These advances herald a growing role for nutrigenomics, since the
development of personalized nutrition interventions is likely to induce large, appropriate and
consistent changes in eating (and other lifestyle) behaviours, thus driving and supporting new
prevention and therapeutic strategies, such as microbiome modulation.

Moreover, the evolving field of MPE, which incorporates traditional epidemiology and pathology
research, is expected to elucidate how various exposures affect disease onset, transformation
and progression. The remit of MPE clearly includes the investigation of the interactive effects of
dietary/lifestyle exposures and tumour molecular features on tumour behaviour (prognosis/clinical
outcome), so that, ideally, the effects of specific variables can be traced to a specific molecular subtype
of cancer [235].
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